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Introduction

Topics

1. Hybrid AC/DC Microgrids
- Hybrid AC/DC microgrids structure
- Power quality in hybrid AC/DC microgrid
- Interfacing converters and control

2. Power Quality Control Through Interfacing Converters
- AC and DC grids support
- Unbalance compensation
- Harmonics control
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» AC-coupled microgrid is the dominant structure now due to its
simple structure and simple control and power management
scheme.

» High frequency AC bus/link is possible.
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» Interlinking converters (ILCs) are used to link the DC and AC buses.
» Variable frequency AC load can be connected to DC bus.

» The DC-coupled microgrid features simple structure and does not need
any synchronization when integrating different DGs.

» Some SEs can be connected to DC bus directly without converters
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» Both DC and AC buses have DGs and SEs, and these buses are linked
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by interlinking converters (ILC).

» Probably the most promising microgrid structures in the near future.

» Requires more coordination between the DC and AC subsystems.

AC
Distributed
Generation

DC
Distributed
Generation

Storage
Element (if
necessary)
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Distribution system loads:
» Distributed loads

» Single phase loads

» Nonlinear loads — energy efficient loads.
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50
» Harmonic Load Current (%)
40 Appliance
30 1st 3rd 5th 7th 9th 11th 13th
20 CFL 100 | 87 60 47 47 40 26
LED 100 | 73 26 27 58 15 16

10 PC 100 | 78 49 19 12 14 14
0 | [ [ [ [ [ 1
2010 2012 2014 2016 2018 2020 2022 Harmonics of some nonlinear loads

(typically THD > 100%)
Household CFLs growth prediction

! Salles et al, “Assessing the Collective Harmonic
Data: Lawrence Berkeley National Lab

Impact of Modern Residential Loads”, IEEE Trans.
Power Delivr. vol. 27, no. 4, pp. 1937-1946, Oct.
2012.

Nonlinear loads are rapidly increasing in distribution systems

>

>
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More efficient loads (CFL, LED, ASD fridge, LED, high efficiency washer,
etc.) are increasingly adopted

Many of them produce high harmonics
Residential system voltage THD in North America will reach 5% soon
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The power quality issues are becoming urgent for future
distribution systems:

» DC subgrid voltage variations and harmonics

» AC subgrid voltage variations:

/

* Frequency deviation

/

+ Voltage magnitude change (particularly with DG)

» AC subgrid voltage unbalance:

+ Ultilities in Canada already experienced tripping of loads due to severe
unbalance

» AC subgrid voltage harmonics.

/

s Distribution system voltage THD is deteriorating

/

s PFC capacitors further complicate the situation

» Traditional centralized power quality compensation does not
work well
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Control of Interfacing Converters
- Manly for Real and Reactive Power Flow

The DC-AC interfacing converters (including DC-AC bus
interlinking converter) can work on:
» Bi-directional power control mode:

s Current control method (CCM) — mostly used for grid-tied
converters

* Voltage control method (VCM) — droop control, virtual
synchronous generator.

» DC link voltage control mode (for DC-AC bus interlinking
converter): balancing the power generation and consumption
on DC bus.

» AC link voltage control mode: mainly for stand-alone microgrid
operation.
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Power Quality Control using
Interfacing Converters

Primary feeder

system, and DC-AC
‘ PV
% Grid support

» Renewable energy based DG
Generator Distribution
transformer
Substation J ;::% Distribution
_ i . transformer /
interlinking converter usually
have available rating for
* Unbalance compensation @. } @. } @. } & }

systems, energy storage

line
ancillary services such as:
<* Harmonics compensation Residential loads

» Ancillary services for DG/SE and microgrid systems are becoming an
Important issue that can further improve the system cost effectiveness

» Distributed compensation is more effective than centralized compensation
due to the distributed loads
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AC Grid Support Functions

The grid-supporting power converter can be controlled as a current source
(CCM) or voltage source (VCM).

*

()
PCC
Reference *
P | Current s Z
Current —»?—» controller PWM > Inverter ]
Generator
Q, I,
* 1INV, nv
E—)— Vi «— Vece
T PLL |e——0omH
) «—
* Vd
Q

Grid voltage amplitude and frequency support control: CCM

» The frequency variation is controlled by the active power while the reactive power
controls the amplitude of voltage.

> The frequency and voltage controllers are proportional controllers (K,, and K) for
realizing the inverse P — f and Q — V droop control.
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AC Grid Support Functions

e |y v | -
vector to oltage » PWM P Inverter @
abe controller I

Q- |V | > Vpce

Grid voltage amplitude and frequency support control: VCM

» When the power converter works as a controllable voltage source, a linking
impedance (physical or virtual) is necessary between the converter and grid.

> The active and reactive power controllers are proportional controllers (kp and k)
for realizing P — f and Q — V droop control.
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2.1 Grid Support

AC/DC Grid Support

Example on ILC control for AC/DC grid support
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droop

Converter
i Controlling
| —
| Vou = fP.U
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Loh et al, “Autonomous Operation of Hybrid
Microgrid With AC and DC Subgrids”, IEEE
Trans. Power Electron. vol. 28, no. 5, pp.
2214-2223, May. 2013

Equalizing the AC side
normalized frequency
and DC side normalized
voltage and determine
the ILC power reference

A possible improvement is to
consider AC & DC grid stiffness

PCC

— 7
PWM | Interlinking
Inverter

Control block diagram of one ILC

ILC works in power control mode
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2.2 Unbalance Compensation ALBERT

» Unbalance voltage affects power equipment, introduces double-frequency
oscillations on DC bus, increase converter AC current peak/narmonics

» Negative sequence current can be generated through interfacing converter to
reduce negative sequence voltage at PCC
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2.2 Unbalance Compensation ALBERT

Unbalance Voltage Compensation Control — CCM based

PCC

p* I Current |
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» Reference power and positive and negative sequence voltages generate the
reference currents of inverter:

1;=P*< v+ S5y >+Q (I k+|2 +—(1|V__E2)V[;>

VEE TR
ky 1 - k) ks (1 —ky)
I; =P v vy |-e Vit + =22V
5 <|v+|2 T ) O\ P Y

» k; and k, provide flexible control of positive and negative sequences while

adjusting power oscillation, max current, etc..
18
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2.2 Unbalance Compensation BERT

Unbalance Voltage Compensation Control

Control scheme switched from positive-sequence current injection to
unbalance compensation (k; and k, adjusted to reduce real power oscillation)
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2.2 Unbalance Compensation ERT

Parallel Interfacing Converters under Unbalanced Voltage:

Parallel Interfacing Converters PCC
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The active-reactive powers oscillations of it®-ILC can be controlled using
scalar coefficients k,; and k;:

P Pik,; ' Qikgi
if:i;i+i;i:< et -Zv_>+< +|2 - — vt ‘ZUI>
[ 2 + ki [v| [v* 12 + kyilv] [0+ |2 + kgilv™] [v*12 + kgilv]

For n-parallel ILCs, the power (DC bus) oscillations caused by the
converters can be properly utilized to cancel each other

+» Aredundant ILC to cancel the effects of other ILCs
% All ILCs participate according to their available ratings
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2.3 Harmonics Compensation & 4

RT

Harmonics Compensation

» Nonlinear loads cause PCC voltage distortions, especially in a weak grid.
> Interlinking converter (or DG interfacing converter) can absorbed the nonlinear

load current and improve the PCC voltage quality.

» The converter side impedance should be controlled

DC Bus

Interlinking
inverter

Equivalent Circuit

AC Bus Y,
(PCC) — = a2

ZDG (S) ZGRID (S)

G
| S V ri (S)
ZLoad (S) Load( ) Grid
Loads
ILC PCC Load Grid
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2.3 Harmonics Compensation
Harmonics Compensation - CCM based control
PCC

—>{ PandQ | !be.fre log_ref Current Interfacing Z
> PWM | .
—» Controllers controller inverter
QRef IDG h
T T _h_ref

P Qm 1R, s
A Vecc h Fundamental
For and Harmonics | ¢ v/
Synchronization Vece 1 detection

Harmonic compensation achieved by controlling the converter as a shunt active
power filter (APF)

Fundamental current reference is generated by the output power control

Reference harmonic current produced by grid side voltage harmonics (Vpcc 1)
and a virtual resistance R;,.

The DG acts as a small resistance at the harmonic frequency (R-APF).

R,, can be adaptively controlled according to the available converter rating (to
avoid interference with primary function of real power generation)
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Harmonics Compensation - CCM based control
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Harmonics Compensation - VCM based control
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» Converter harmonic voltage is controlled as Vh_ref =-G 'Vpcc_h

<«—— Vpcc

> Then the equivalent harmonic impedance at converter side: Z, . ., =2, /(1+G)

» Harmonic impedance at converter side can be controlled substantially lower than
that at grid side — nonlinear load currents flow to converter
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Harmonics Compensation - VCM based control
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With more controllability and flexibility in a microgrid system, valuable ancillary
functions can be provided for better grid operation and better power quality.

Voltage support is the most widely implemented ancillary functions now.

Unbalance and harmonics compensation is becoming more important with the
increasing single phase and nonlinear loads - virtual impedance control can
facilitate the unbalance and harmonics compensation.

Coordinated virtual impedance control is important in multiple converters for
optimal task sharing (considering PFC and harmonics resonance) and void
circulation current.

To encourage more ancillary functions, relevant grid codes, polices and
markets are required.
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Conclusions ALBERT

Future research direction on hybrid AC/DC microgrid power quality
control:

» Parallel operation of DC-AC interlinking converters (ILCs) between DC and AC
subgrids.

» Harmonics compensation and control with low switching frequency — new
converter topologies, new PWM techniques.

» Multiple converter interactions — resonances, impedance variations, damping.

» System level coordination through supervisory control (SCADA).
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