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Introduction 

   

Topics 

1.  Hybrid AC/DC Microgrids 

    - Hybrid AC/DC microgrids structure 

    - Power quality in hybrid AC/DC microgrid 

    - Interfacing converters and control 

 

2.  Power Quality Control Through Interfacing Converters 

    - AC and DC grids support 

    - Unbalance compensation  

    - Harmonics control 
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 1.1 Hybrid AC/DC Microgrid 

Future Power Systems 

Source: www.clean-coalition.org  
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 AC-coupled microgrid is the dominant structure now due to its 

simple structure and simple control and power management 

scheme. 

 High frequency AC bus/link is possible. 

 1.1 Hybrid AC/DC Microgrid 
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 Interlinking converters (ILCs) are used to link the DC and AC buses. 

 Variable frequency AC load can be connected to DC bus. 

 The DC-coupled microgrid features simple structure and does not need 

any synchronization when integrating different DGs. 

 Some SEs can be connected to DC bus directly without converters 

 1.1 Hybrid AC/DC Microgrid 

6 



Hybrid AC/DC Coupled Microgrid 
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 Both DC and AC buses have DGs and SEs, and these buses are linked 

by interlinking converters (ILC). 

 Probably the most promising microgrid structures in the near future. 

 Requires more coordination between the DC and AC subsystems. 

 1.1 Hybrid AC/DC Microgrid 
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 1.2 Power Quality 

General residential distribution feeder in North America 

Distribution system loads: 

 Distributed loads 

 Single phase loads 

 Nonlinear loads – energy efficient loads. 
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 1.2 Power Quality 

Appliance 
Harmonic Load Current (%) 

1st 3rd 5th 7th 9th 11th 13th 

CFL 100 87 60 47 47 40 26 

LED 100 73 26 27 58 15 16 

PC 100 78 49 19 12 14 14 

Harmonics of some nonlinear loads  

(typically THD > 100%) 
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Household CFLs growth prediction  
Data:  Lawrence Berkeley National Lab 

Salles et al, “Assessing the Collective Harmonic 

Impact of Modern Residential Loads”, IEEE Trans. 

Power Delivr. vol. 27, no. 4, pp. 1937-1946, Oct. 

2012. 

Nonlinear loads are rapidly increasing in distribution systems 

 More efficient loads (CFL, LED, ASD fridge, LED, high efficiency washer, 

etc.) are increasingly adopted 

 Many of them produce high harmonics 

 Residential system voltage THD in North America will reach 5% soon 
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 1.2 Power Quality 

The power quality issues are becoming urgent for future 

distribution systems: 

 DC subgrid voltage variations and harmonics 

 AC subgrid voltage variations:  

 Frequency deviation  

 Voltage magnitude change (particularly with DG) 

 AC subgrid voltage unbalance:  

 Utilities in Canada already experienced tripping of loads due to severe 

unbalance 

 AC subgrid voltage harmonics. 

 Distribution system voltage THD is deteriorating 

 PFC capacitors further complicate the situation 

 Traditional centralized power quality compensation does not 

work well 



AC 
subsystem 
or AC grid 

DC

AC

DG/SE
(PV,  

Fell cell, 
battery)

DC

AC

DC

DC

AC 
subsystem 
or AC grid 

DG/SE
(PV,  

Fell cell, 
battery)

DC

AC

Micro- or 
wind

turbine

AC 
subsystem 
or AC grid DC

AC

DC

AC

DC

DC

Micro- or 
wind

turbine

AC 
subsystem 
or AC gridDC

AC

DC/AC interfacing converters  AC/AC interfacing converters  

Single stage DC-AC 

Double stage (DC-DC and DC-AC) 

Two stage (AC-DC-AC) 

Multiple stage conversion 

 1.3 Interfacing Converters 
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The DC-AC interfacing converters (including DC-AC bus 

interlinking converter) can work on: 

 Bi-directional power control mode:  

 Current control method (CCM) – mostly used for grid-tied 

converters 

 Voltage control method (VCM) – droop control, virtual 

synchronous generator. 

 

 DC link voltage control mode (for DC-AC bus interlinking 

converter): balancing the power generation and consumption 

on DC bus. 

 

 AC link voltage control mode: mainly for stand-alone microgrid 

operation. 

Control of Interfacing Converters 

- Manly for Real and Reactive Power Flow 
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 1.3 Interfacing Converters 



Topic 2 

   

Power Quality Control using  

Interfacing Converters 

 Renewable energy based DG 

systems, energy storage 

system, and DC-AC 

interlinking converter usually 

have available rating for 

ancillary services such as: 

 Grid support 

 Unbalance compensation 

 Harmonics compensation 

Substation 

transformer

Distribution 

transformer

Distribution 

line
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PV 
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 Ancillary services for DG/SE and microgrid systems are becoming an 

important issue that can further improve the system cost effectiveness 

 

 Distributed compensation is more effective than centralized compensation 

due to the distributed loads 

13 



AC Grid Support Functions  
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 The frequency variation is controlled by the active power while the reactive power 

controls the amplitude of voltage. 

 The frequency and voltage controllers are proportional controllers (𝐾𝑝 and 𝐾𝑞) for 

realizing the inverse 𝑃 − 𝑓 and 𝑄 − 𝑉 droop control. 

The grid-supporting power converter can be controlled as a current source 

(CCM) or voltage source (VCM). 

Grid voltage amplitude and frequency support control: CCM 

 2.1 Grid Support 
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AC Grid Support Functions  
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Grid voltage amplitude and frequency support control: VCM 

 When the power converter works as a controllable voltage source, a linking 

impedance (physical or virtual) is necessary between the converter and grid. 

 The active and reactive power controllers are proportional controllers (𝑘𝑃 and 𝑘𝑞) 

for realizing  𝑃 − 𝑓 and 𝑄 − 𝑉 droop control. 

 

 2.1 Grid Support 
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AC/DC Grid Support 

VPCC

+-

PLL 


f
Normalization

NormalizationVdc

UPf .

UPdcV ., *P
Reference 

current 

Calculator
*Q

*i

*i

PWM
Interlinking 

Inverter
abc

Grid
Z

PCC
PK 

e

Example on ILC control for AC/DC grid support 

Control block diagram of one ILC 
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𝑓𝑃.𝑈. =
𝑓 − 0.5 × 𝑓𝑚𝑎𝑥 + 𝑓𝑚𝑖𝑛

0.5 × 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛
 𝑉𝑑𝑐, 𝑃.𝑈. =

𝑉𝑑𝑐 − 0.5 × 𝑉𝑑𝑐,𝑚𝑎𝑥 + 𝑉𝑑𝑐,𝑚𝑖𝑛

0.5 × 𝑉𝑑𝑐,𝑚𝑎𝑥 − 𝑉𝑑𝑐,𝑚𝑖𝑛

 

Loh et al, “Autonomous Operation of Hybrid 

Microgrid With AC and DC Subgrids”, IEEE 

Trans. Power Electron. vol. 28, no. 5, pp. 
2214–2223, May. 2013 

 2.1 Grid Support 

A possible improvement is to 

consider AC & DC grid stiffness 
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 2.2 Unbalance Compensation 

 Unbalance voltage affects power equipment, introduces double-frequency 

oscillations on DC bus, increase converter AC current peak/harmonics 

 Negative sequence current can be generated through interfacing converter to 

reduce negative sequence voltage at PCC  
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Equivalent circuit for unbalance compensation 
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Unbalance Voltage Compensation Control – CCM based  

*P

VPCC

Current 

controller

PWM Inverter

Iα

Reference 

Current  

Generator

Iinv
αβ 

abc

αβ

abc

Grid
Z

Current 

controller
+-

+-

Iβ 

Sequence 

Extractor

αβ 

abc

Vα

Vβ 

Vα+  Vα-

Vβ+  Vβ-

PCC

*Q

*

I

*

I

𝐼𝛼
∗ = 𝑃∗

k1

v+ 2
𝑉𝛼

+ +
(1 − k1)

v− 2
𝑉𝛼

− + 𝑄∗
k2

v+ 2
𝑉𝛽

+ +
(1 − k2)

v− 2
𝑉𝛽

−  

𝐼𝛽
∗ = 𝑃∗

k1

v+ 2
𝑉𝛽

+ +
(1 − k1)

v− 2
𝑉𝛽

− − 𝑄∗
k2

v+ 2
𝑉𝛼

+ +
(1 − k2)

v− 2
𝑉𝛼

−  

 k1 and k2 provide flexible control of positive and negative sequences while 

adjusting power oscillation, max current, etc.. 

 Reference power and positive and negative sequence voltages generate the 

reference currents of inverter: 

 2.2 Unbalance Compensation 
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Switching the 

control strategy
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 2.2 Unbalance Compensation 
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Parallel Interfacing Converters under Unbalanced Voltage: 

 The active-reactive powers oscillations of 𝑖𝑡ℎ-ILC can be controlled using 

scalar coefficients 𝑘𝑝𝑖 and 𝑘𝑞𝑖: 

Parallel interfacing converters with 

common DC and AC links  
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 For n-parallel ILCs, the power (DC bus) oscillations caused by the 

converters can be properly utilized to cancel each other 

 A redundant ILC to cancel the effects of other ILCs 

 All ILCs participate according to their available ratings 

 2.2 Unbalance Compensation 
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Peak currents of ILCs 

ILC-1 output active power ILC-2 output active power ILC-3 output active power 

ILCs collective active power PCC negative-seq voltage 

 2.2 Unbalance Compensation 

Parallel Interfacing Converters under Unbalanced Voltage 

Three ILCs with rated power: S1=9kVA, S2=4kVA, S3=10kVA 
From positive-seq current injection to unbalance comp with peak current sharing 

ILC-1 

ILC-2 

ILC-3 



 Nonlinear loads cause PCC voltage distortions, especially in a weak grid. 

 Interlinking converter (or DG interfacing converter) can absorbed the nonlinear 

load current and improve the PCC voltage quality. 

 The converter side impedance should be controlled 

Harmonics Compensation 

Equivalent Circuit 
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 2.3 Harmonics Compensation 

22 



VPCC

Current 

controller
PWM

Interfacing 

inverter

PRef

P and Q

Controllers

Pfb

Fundamental 

and Harmonics 

detection

Qfb

Grid
ZIDG_f_ref

1/Rh

IDG_h_ref

IDG_ref
++ +-

Ifb

VPCC_h

QRef

For 

Synchronization VPCC_f

PCC

 Harmonic compensation achieved by controlling the converter as a shunt active 

power filter (APF) 

 Fundamental current reference is generated by the output power control 

 Reference harmonic current produced by grid side voltage harmonics (VPCC_h) 

and a virtual resistance Rh .  

 The DG acts as a small resistance at the harmonic frequency (R-APF). 

 Rh can be adaptively controlled according to the available converter rating (to 

avoid interference with primary function of real power generation) 

Harmonics Compensation - CCM based control  

 2.3 Harmonics Compensation 
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 2.3 Harmonics Compensation 
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Harmonics Compensation - VCM based control  

PRef P

Controller
+-

Pfb

ω

QRef Q

Controller
+-

Qfb

Vmag

1

s

θ

Voltage 

controller
PWM

Interfacing 

inverter

Vfb

Space 

vector 

to abc

Grid
Z

+-

Vf_ref

VPCC

VPCC_h

For 

Synchronization

G

Vh_ref

VDG_ref
++

VPCC_f

PCC

Fundamental 

and Harmonics 

detection

_ _h ref PCC hV G V   Converter harmonic voltage is controlled as 

_ / (1 )ILC eq ILCZ Z G  Then the equivalent harmonic impedance at converter side: 

 Harmonic impedance at converter side can be controlled substantially lower than 

that at grid side – nonlinear load currents flow to converter 

. 

 2.3 Harmonics Compensation 

25 



0.7 0.72 0.74 0.76 0.78 0.8
-100

0

100

V

0.7 0.72 0.74 0.76 0.78 0.8
-100

0

100

V

0.7 0.72 0.74 0.76 0.78 0.8

-5

0

5

A

0.7 0.72 0.74 0.76 0.78 0.8

-5

0

5

Time (S)

A

(c)

(b)

(d)

(a)

0 5 10 15 20 25 30
0

2

4

6

8

10

Harmonic order

M
ag

 (%
 o

f F
un

da
m

en
ta

l)

2.3 2.32 2.34 2.36 2.38 2.4
-100

0

100

V

2.3 2.32 2.34 2.36 2.38 2.4
-100

0

100

V

2.3 2.32 2.34 2.36 2.38 2.4

-5

0

5

A

2.3 2.32 2.34 2.36 2.38 2.4

-5

0

5

Time (S)

A

(a)

(b)

(d)

(c)

0 5 10 15 20 25 30
0

2

4

6

8

10

Harmonic order

M
a
g
 (

%
 o

f 
F

u
n
d
a
m

e
n
ta

l)

1.5 1.52 1.54 1.56 1.58 1.6
-100

0

100

V

1.5 1.52 1.54 1.56 1.58 1.6
-100

0

100

V

1.5 1.52 1.54 1.56 1.58 1.6

-5

0

5

A

1.5 1.52 1.54 1.56 1.58 1.6

-5

0

5

Time (S)

A(d)

(a)

(b)

(c)

0 5 10 15 20 25 30
0

2

4

6

8

10

Harmonic order

M
a
g
 (

%
 o

f 
F

u
n
d
a
m

e
n
ta

l)

(a) PCC phase voltage, (b) ILC phase voltage, (c) Grid current, (d) ILC current. 

Harmonic rejection (G=-1) Harmonic compensation (G>0) Uncontrolled (G=0) 

PCC voltage harmonics PCC voltage harmonics PCC voltage harmonics 

Harmonics Compensation - VCM based control  
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 With more controllability and flexibility in a microgrid system, valuable ancillary 

functions can be provided for better grid operation and better power quality. 

 

 Voltage support is the most widely implemented ancillary functions now. 

 

 Unbalance and harmonics compensation is becoming more important with the 

increasing single phase and nonlinear loads - virtual impedance control can 

facilitate the unbalance and harmonics compensation.  

 

 Coordinated virtual impedance control is important in multiple converters for 

optimal task sharing (considering PFC and harmonics resonance) and void 

circulation current.  

 

 To encourage more ancillary functions, relevant grid codes, polices and 

markets are required. 

 

 

 Conclusions 

27 



Future research direction on hybrid AC/DC microgrid power quality 

control: 

 

 Parallel operation of DC-AC interlinking converters (ILCs) between DC and AC 

subgrids.  

 

 Harmonics compensation and control with low switching frequency – new 

converter topologies, new PWM techniques. 

 

 Multiple converter interactions – resonances, impedance variations, damping. 

 

 System level coordination through supervisory control (SCADA). 

 

28 

 Conclusions 
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